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Abstract
Equilibrated grain boundary groove shapes for solid Sn in equilibrium with
Cd–Sn liquid were directly observed after annealing a sample at the eutectic
temperature for about 8 days. The thermal conductivities of the solid phase,
KS, and the liquid phase, KL, for the groove shapes were measured. From the
observed groove shapes, the Gibbs–Thomson coefficients were obtained with a
numerical method, using the measured G, KS and KL values. The solid–liquid
interfacial energy of solid Sn in equilibrium with Cd–Sn liquid was determined
from the Gibbs–Thomson equation. The grain boundary energy for solid Sn
was also calculated from the observed groove shapes.

1. Introduction

The solid–liquid interfacial energy, σSL, is defined as the reversible work required to create a
unit area of the interface at constant temperature, volume and chemical potentials [1, 2], and it is
an important physical parameter in nucleation, crystal growth from melt, welding phenomena,
and liquid phase sintering. Unfortunately, the measurement of σSL is difficult. For this reason,
values of σSL have usually had to be obtained either from nucleation theory [3–8], theoretical
estimation [9–20], interpretation of crystal growth experiments [21–29], measurement of
dihedral angles [30] and the direct applications of the Gibbs–Thomson equation (i.e. melting
point of small crystal [31–35], and grain boundary groove shapes in an applied temperature
gradient [36–50]).

One of the most common techniques used to measure σSL is to observe the equilibrated
grain boundary groove shapes. In this technique, the solid–liquid interface is equilibrated with
a grain boundary in a temperature gradient, G, as shown in figure 1; then it is necessary to
accurately measure the shape of the grain boundary groove (cusps). The Gibbs–Thomson
effect can be expressed in the form of the change in undercooling, �Tr , for an equilibrated
grain boundary groove as

� = �Trr (1)
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Figure 1. Schematic illustration of an equilibrated grain boundary groove formed at a solid–liquid
interface in a temperature gradient, showing the x, y coordinates, σ⇀SL, surface tension, σ⇀GB, grain
boundary tension and θ .

where � is the Gibbs–Thomson coefficient and r is the radius of the curved interface.
Calculation of � values with equation (1) by using the equilibrated grain boundary groove
shapes has been described in detail in the literature [41–50]. The solid–liquid interfacial energy
is obtained from the thermodynamic definition of the Gibbs–Thomson coefficient, which is
expressed as

σSL = ��S∗ (2)

where �S∗ is the effective entropy change per unit volume for melting. The solid–liquid surface
energy can be obtained from equation (2) by using the calculated � values and known �S∗
values.

The aim of the work is to determine �, σSL, and the grain boundary energy, σGB, of the
solid Sn in equilibrium with the liquid Cd–Sn solution from the observed grain boundary groove
shapes.

2. Experimental procedure

The experimental procedure and sample preparation were the same as in [45]. In this work a
sample with initial concentration C0 (Cd–95 at.% Sn alloy) was prepared in a vacuum furnace
by using 99.99% pure Sn and 99.99% pure Cd. After several stirrings, the molten alloy
was poured into a prepared graphite crucible held in a hot filling furnace which was set at
approximately 50 K above the eutectic temperature, TE, of the alloy (450 K). The molten metal
was then directionally solidified in a hot filling furnace from bottom to top to ensure that the
crucible was completely filled. The sample was then taken out of the hot filling furnace, all
thermocouples and the inner heating element were placed in the sample, and the sample was
inserted in a cooling jacket which was then was placed in the radial heat flow apparatus.

The sample was heated from the centre using a single wire and the outside of the specimen
was kept cool with a water cooling jacket. A thin liquid layer (0.5–1 mm thick) was melted
around the central heater and the specimen was annealed in a very stable temperature gradient
for 8 days to get the equilibrated solid Sn with the Cd–Sn liquid. During the annealing
period, the temperature of the stationary thermocouples was recorded continuously, and the
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temperature of the moveable thermocouple and input power were periodically recorded. The
temperature of the heating wire was controlled to an accuracy of ±0.05 K with a Eurotherm
905S type controller. The temperature in the sample was stable within about ±0.05 K for a day
and ±0.1 K for up to a week. During the run, the specimen was kept in a slightly positive argon
pressure. At the end of the annealing time, the sample was rapidly quenched by turning off the
input power, which is sufficient to obtain a well-defined and stationary solid–liquid interface
(i.e. grain boundary groove shapes) as shown in figure 2.

The quenched sample was first cut transversely into ∼25 mm length, and the transverse
sections were ground flat with 180-grid SiC paper before mounting. Grinding and polishing
were then carried out using standard metallographic techniques. After polishing, the samples
were etched with a suitable enchant (10 ml acetic acid, 10 ml nitric acid, and 80 ml glycerin)
to observe the equilibrated solid–liquid interface. The equilibrated grain boundary groove
shapes which occurred on the solid–liquid interface were carefully photographed and numbered
(figure 2). The groove shapes were selected from apparently larger grains on the longitudinal
and transverse sections, and the symmetrical groove shapes were used for � determinations.

The actual coordinates of the cups, x, y, should be measured on orthogonal axes, x, y, z,
where the x-axis is parallel to the solid–liquid interface, the y-axis is normal to the solid–liquid
interface and the z-axis lies at the base of the grain boundary groove. Maraşli and Hunt [43]
showed that measured x ′, y ′ coordinates can be transformed to x, y coordinates by considering
the geometry of the grain boundary groove shapes in two different planes which are parallel to
each other (see the details in [43]). The relation between x and x ′ can be expressed as [43]

x = x ′ cos α = x ′
√

a2 + d2

√
a2 + b2 + d2

(3)

and the relation between y ′ and y can be expressed as

y = y ′ cos β = y ′ d√
a2 + d2

(4)

where d is the distance between the first and second plane along the z ′-axis, b is the
displacement of the grain boundary position along the x ′-axis, a is the displacement of the
solid–liquid interface along the y ′-axis, α is the angle between the x ′-axis and x-axis, and β is
the angle between the y ′-axis and y-axis.

As can be seen from equations (3) and (4), if the values of a, b and d are measured, then
the groove coordinates, x ′, y ′, can be transformed into x, y coordinates.

When the thermal conductivity of the solid phase, KS, is not equal to the thermal
conductivity of the liquid phase, KL, the curvature undercooling, �Tr , is no longer a linear
function of the distance. In order to calculate the Gibbs–Thomson coefficient, � with a
numerical method, it is necessary to know the thermal conductivity of both phases. The thermal
conductivity of the phases must be measured as accurately as possible not only to find out the
thermal conductivity ratios (R = KL/KS) but also to calculate the temperature gradient, GS,
in the solid phase at the solid–liquid interface.

The radial heat flow is an ideal technique for measuring the conductivities of the solid
phases. The temperature gradient is given by the Fourier law as

GS =
(

dT

dr

)
= − Q

AKS
. (5)

Integration of equation (5) for the radial heat flow gives

KS = Q ln(r2/r1)

2π
(T1 − T2)
(6)
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Figure 2. Typical grain boundary groove shapes for the solid Sn in equilibrium with liquid Cd–Sn
solution.

(This figure is in colour only in the electronic version)

where Q is the input power from the centre of the sample, 
 is the length of the heating element,
r1 and r2 are fixed distances from the centre of the sample, and T1 and T2 are temperatures at
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Figure 3. Thermal conductivities of pure Sn [51], solid Sn solution and solid Cd–Sn eutectic
solution.

the fixed positions r1 and r2, respectively. If Q, 
, r1, r2, T1 and T2 can be accurately measured
for a well-characterized sample, then reliable KS values can be evaluated.

The sample was heated up in steps of 20 K up to 445 K (5 K below TE). First, isotherms
macroscopically parallel to the axial centre of the sample were obtained for the desired
temperature, by moving the central heater up and down, and the sample was kept at this steady-
state condition for at least 2 h. Then total input power Q and T1, T2 temperatures were measured
at this condition. Finally, the sample was left to cool to room temperature. Then the sample was
moved from the radial heat flow apparatus and was cut transversely near to the measurement
points. After that the sample was ground and polished for r1 and r2 measurements. The
distance was measured with Olympus HP2 optical microscope to an accuracy of ±0.01 mm.
The transverse and longitudinal sections of the sample were examined for porosity, cracks and
casting defects to make sure that these would not introduce any errors to the measurements.

The thermal conductivities of solid phases of Cd–66.54 at.% Sn (Cd–Sn eutectic) and Sn–
5.83 at.% Cd alloys were measured in the radial heat flow apparatus and are shown in figure 3.
As can be seen from figure 3, in order to obtain the KS values at TE, the thermal conductivity
versus temperature curves were extrapolated to the eutectic temperature, TE. The value of
thermal conductivity of the solid Sn solution, KS, and the thermal conductivity of the solid
Cd–Sn eutectic solution are obtained as 53 W K−1 m−1 and 60 W K−1 m−1, respectively. The
liquid thermal conductivity to solid thermal conductivity ratio (RE = K E

L/K E
S ) for the Cd–Sn

eutectic solution was obtained from a directional solidification experiment as 0.73. The value
of thermal conductivity of the liquid Cd–Sn eutectic solution, KL, is obtained as 44 W K−1 m−1

by using the measured KS and RE values. So, the thermal conductivity ratio R = KL/KS is
obtained as 0.83 for solid Sn in equilibrium with liquid Cd–Sn solution.

The temperature gradient, GS, at the solid–liquid interface in the solid phase was calculated
for each grain boundary groove, by using the thermal conductivity of the solid phase, the input
power, the length of the heating element, and the position of the solid–liquid interface.
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Figure 4. Cd–Sn phase diagram [52].

3. Results and discussion

If a binary eutectic alloy is held in a temperature gradient above the eutectic temperature with a
composition of C0 (provided that CSα < C0 < CE or CE < C0 < CSβ ), initially the alloy will
be a mixture of solid and liquid up to the liquidus temperature (figure 4) [52]. In the sample,
liquid will be present not only in the solid phase as a droplet but also in the grain boundary as
liquid channels. The existence of a temperature gradient will impose a composition gradient.
This composition gradient provides the driving force for the interfacial movement. Each droplet
and liquid channel transport solute into the bulk liquid according to temperature gradient zone
melting (TGZM) [53–56].

Cleaning up the grain boundaries takes longer than the droplet migrating into the bulk
liquid through the solid. This is due to the possibility of some liquid droplet addition to
the liquid channel and because of the effect of curvature of the cusp on the driving force
of the interface motion. The TGZM processes will be completed when the uniform liquid
phase (which is almost of the eutectic composition CE, at the interface) has a sharp solid–
liquid interface with the single solid phase (which is a composition almost at the limit of
solid solubility, CS). The phases will not be completely uniform because of the temperature
gradient which produces a small compositional gradient in an alloy system at equilibrium. Mass
transport by thermal diffusion (Sorét effect) and segregation become especially significant in
large phases for high temperature gradients. The concentration change in the liquid phase
and single solid phase has been calculated and obtained by chemically analysis for the Pb–
Sn system [57]. It has been shown that the concentration change due to a 2 K temperature
difference for the 1 mm Pb–Sn liquid layer was found to be in the order of 0.001 at fraction
0.1 atomic percent. The concentration change was even smaller than this value for a thinner
liquid layer, i.e. there was no detectable Sorét effect and segregation effect in the equilibrated
liquid and solid phases.
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Table 1. Gibbs–Thomson coefficients for solid Sn in equilibrium with liquid Cd–Sn solution.

Gibbs–Thomson coefficient × 10−8 (K m)

Groove no.
(see figure 2)

G × 102

(K m−1)

α

(deg)
β

(deg) LHS of the groove RHS of the groove

1 7.01 3.3 1.7 6.49 7.42
2 7.37 35.5 10.5 7.43 7.76
3 7.84 2.5 26.5 6.16 6.67
4 7.71 4.0 4.1 6.76 8.69
5 7.17 3.2 3.1 6.68 7.53
6 7.41 1.9 3.0 8.31 8.00
7 8.73 3.9 3.3 7.30 7.43
8 7.68 6.8 16.7 7.20 7.71
9 7.23 4.7 1.7 6.40 6.90

10 6.53 10.0 13.3 7.40 7.31

A small temperature decrease causes solidification at the equilibrated solid–liquid interface
and also at the solid phase-casting region interface, and a small temperature increase causes
melting at same interfaces. The later effect causes new liquid droplets to join the single
solid phase and the grain boundaries. Both solidification and melting prevent the solid–
liquid interface from becoming stationary and thus the phases reaching equilibrium. Non-
equilibrated grooves (because of the small temperature fluctuation or short annealing time)
have liquid droplets in the single solid phase and/or liquid films in the grain boundaries. These
effects can be minimized by using a very stable temperature gradient for a long enough time.
The equilibrated grain boundary grooves will then be stationary, and the solid phase and the
grain boundaries will not be contaminated with droplets or liquid films. So, equilibrated
grain boundary groove shapes are formed, where the planar grain boundaries intersect with
the stabilized planar solid–liquid interface. The equilibrated grain boundary groove shapes
should be selected from apparently large and symmetrical grains with a thin liquid layer for �

calculations in order to prevent errors from the Sorét effect and/or segregation effect.
The Gibbs–Thomson coefficient, �, can be calculated by a numerical method for any

equilibrated grain boundary groove shape provided that the thermal conductivities of the
phases, KS, KL, the temperature gradient, G, of the solid phase at the solid–liquid interface
and the actual coordinates of the grooves (x, y) are known. The Gibbs–Thomson coefficient for
solid Sn in equilibrium with liquid Cd–Sn solution was determined from the equilibrated groove
shapes by such a numerical method. The calculations of � were made using ten equilibrated
grain boundary groove shapes (figure 2) and the results are given in table 1. The average value
obtained from table 1 is � = 7.3 × 10−8 K m with a standard deviation of ±0.6 × 10−8 K m.
The estimated error in � obtained by considering the fractional error in each of the measured
quantities was estimated to be in the order of 7–8%, which is similar to the scatter in the values
calculated in table 1.

To calculate the solid–liquid interfacial energy, it is also necessary to know the effective
entropy change per unit volume, �S∗. The effective entropy change for a two-component
system is given as [41]

�S∗ = RTE(CS − CL)

mLVS(1 − CL)CL
(7)

where R is the gas constant, TE is the melting temperature of the alloy, VS is the molar volume
of solid, mL is the liquidus slope, and CS and CL are the compositions of the equilibrated solid
and liquid phases. The other parameters (TE, mL, CS and CL) can be obtained from the relevant
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Table 2. Effective entropy change per unit volume �S∗ , for solid Sn in equilibrium with liquid
Cd–Sn solution.

Alloy
Liquid phase
CL

Solid phase
CS f (C) TE (K)

VS × 10−6

(m3)

mL × 102

(K/at.fraction)

�S∗ × 106

(J K−1 m−3)

Cd–Sn Eutectic Solid Sn 1.24 450 16.28 1.42 2.0
(Cd–66.54 at.%Sn) (Sn–5.83 at.% Cd)

f (C) = CS − CL/[(1 − CL)CL]

Table 3. The solid–liquid interfacial energy for solid Sn in equilibrium with liquid Cd–Sn solution.

Alloy Liquid phase Solid phase

The Gibbs–Thomson
coefficient
� × 10−8 (K m)

Effective entropy
change �S∗ × 106

(J K−1 m−3)

The solid–liquid
interfacial energy
σSL

(mJ m−2)

Cd–Sn Eutectic Solid Sn 7.3 ± 0.6 2.0 146 ± 11
(Cd–66.54 at.% Sn) (Sn–5.83 at.% Cd)

phase diagram (figure 4). The values used to calculate the effective entropy change per unit
volume for Cd–Sn eutectic system are given in table 2. The error in the determined mL is
about 4% [58]. The estimated error in the effective entropy change per unit volume obtained
by considering the fractional error in each of the measured quantities was estimated to be of the
order of 5%.

If the Gibbs–Thomson coefficient, �, and the effective entropy change, �S∗, are known
or measured, the solid–liquid interfacial energy, σSL, can be calculated from equation (2) for
any system. The values of σSL together with the estimated errors and standard deviation are
given in table 3. The error in � was estimated to be 8% and in �S∗ about 5%, and this gave a
total estimated error of 13%. A comparison with the previous work is shown in table 4(b). A
reasonably good agreement is obtained between the experimental values of σSL of solid Sn in
equilibrium with liquid Cd–Sn solution (146 mJ m−2) and solid Sn in equilibrium with liquid
Pb–Sn solution (132.43 mJ m−2). However, σSL values for Sn (49, 54.5, 59, 59.3, 62, 65, 70.6
and 77 mJ m−2) obtained with the homogenous nucleation theory by Mondal [59], Turnbull [3],
Eustathopoulos [15], Skripov [60], Waseda [12], Lu [67], Turnbull [4], Perepezko et al [8], and
Vinet et al [61] respectively are rather smaller than our experimental result for the solid Sn–
liquid Cd–Sn solution. Values of σSL for pure Sn (44, 50, 53.6, 60, 62 and 66 mJ m−2) obtained
with the theoretical estimates by Kotze and Kuhlmann-Wilsdorf [13], Jones and Chadwick [56],
Waseda et al [12], Zadumkin [10], Lu et al [62] and Miedema [19] are also smaller than our
experimental results. Solid–liquid interfacial energy values obtained with the crystal growth
(CG) method by Jordan and Hunt [28], with the depression melting point (DMP) method by
Wronski [32] and Waseda [12] and with nucleation undercooling (NU) method by Jones [63]
and Eustathopoulos [68] are also smaller than our experimental result (table 4). It should be
noted that the nucleation theory will give lower values, and also that nucleation theory only
considers pure materials (i.e. both the solid phase and the liquid phase have the same pure
materials); it should also be noted that the effect of alloying for the solid phase, liquid phase
or both phases will probably increase the solid–liquid interfacial energy due to the actual alloy
addition as well as due to the decrease in temperature.

From the force balance at the grain boundary groove, the grain boundary energy can be
expressed as

σGB = 2σSL cos θ, (8)
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Table 4. A comparison of σSL, and σGB, measured in the present work with the previous work. (Note: GBG: grain
boundary groove method; CG: crystal growth; NU: nucleation under cooling; DMP: depression melting point.)

(a) For alloy systems: Sn-based binary alloys

System Solid phase Liquid phase
TE

(K)
Solid–liquid interfacial
energy σSL (mJ m−2)

Grain boundary
energy σGB (mJ m−2)

Cd–Sn Sn (Sn–5.83 at.% Cd) CdSn(Cd–66.54 at.% Sn) 450 146 ± 11 GBG [present work] 283 ± 40 GBG [present work]
Pb–Sn Sn (Sn–1.45 at.% Pb) PbSn (Sn–26.1 at.% Pb) 456 132.43 ± 17.22 [41] GBG 262.77 ± 36.79 [41] GBG

(b) For pure Sn

Solid–liquid interfacial energy σSL (mJ m−2)

System Nucleation Theoretical estimates Experimental
Grain boundary energy
σGB(mJ m−2)

Pure Sn 54.5 [3] 60 [10] 49.5–61.3 [28] from CG 160 [65]
65 [4] 53.6 [12] 62 ± 10 [32] from DMP 164 [66]
70.6 [8] 44 [13] 75 [63] from NU
59.3 [12] 66 [19] 83 [63] from NU
49 [59] 62 [62] 54 [63] from NU
59 [15, 60] 50 [64] 66 [63] from NU
77 [61] 66.2 [12] from DMP
62 [67] 62 [68] from NU
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where θ = θA+θB
2 is the angle that the solid–liquid interface makes with the y-axis (figure 1).

The angles, θA and θB, were obtained from the cusp coordinates, x and y, by using a Taylor
expansion for the base of the groove. The grain boundary energies were calculated from
equation (8) using the related σSL and θ for ten groove shapes for solid Sn in equilibrium with
liquid Cd–Sn solution (figure 2) and given in table 4 and compared with results from previous
work in the same table. The average grain boundary energy, with experimental error, was found
to be σGB = 283 ± 40 mJ m−2. The error is estimated to be about 14% for σGB. A comparison
of σSL and σGB measured in the present work with the previous work is given in table 4.

4. Conclusions

(1) The variation of the thermal conductivity with temperature up to TE for the solid Sn and
solid Cd–Sn eutectic solution was measured and the thermal conductivity of the liquid
Cd–Sn eutectic solution at TE was obtained for the Cd–Sn system.

(2) The equilibrated grain boundary groove shapes were obtained for solid Sn in equilibrium
with liquid Cd–Sn solution with a radial heat flow apparatus, and the Gibbs–Thomson
coefficient, �, was obtained by using the groove shapes as � = (7.3 ± 0.6) × 10−8 K m.

(3) The effective entropy change per unit volume, �S∗, was calculated to be (2.0 ×
106 J K−1 m−3) by using the phase diagrams and related parameters.

(4) The solid–liquid interfacial energy, σSL, was measured to be σSL = (146 ± 11) mJ m−2 by
using the Gibbs–Thomson coefficient, �, and the effective entropy change, �S∗.

(5) The grain boundary energies, σGB, were determined to be σGB = (283 ± 40) mJ m−2 by
using the equilibrated groove shapes and the related σSL.
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